

H-2325

First Year M. A. Examination

May/June - 2018

Mathematics : Paper-406

(P.D.E. & Fourier Analysis)

Time : 3 Hours]

Total Marks : 100

Instructions :

- (2) There are five questions in the question paper.
- (3) Answer all questions.
- (4) Figure to the right indicates marks of the questions.

Q.1

- (a) Determine Simultaneous differential equations for the first order and the first degree 7 in three variables.
- (b) Define: Pfaffian differential equation. Show that a Pfaffian differential equation in two variables always possesses an integrating factor.
- (c) Solve the equation $(x^2z y^3)dx + 3xy^2dy + x^3dz = 0$

OR

- (a) If X is a vector space such that X. curl X = 0 and μ is an arbitrary function of x, y, z 7 then prove that μX . curl $\mu X = 0$
- (b) show that the differential equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 xy)dz = 0$ 7 is integrable and also find its primitive.
- (c) State and prove Natani's method.
- Q.2
- Checklons Prove the P
- (a) Solve the equation (y+z)dx + (z+x)dy + (x+y)dz = 0
- (c) Find the surface which intersects the surfaces of the system z(x + y) = c(3z + 1) 6 orthogonally and which passes through the circle $x^2 + y^2 = 1$, z = 1.

1

[Contd...

6

6

7

7

7 (a) State and prove Charpit's method. 7 (b) Find the surface which is orthogonal to the one-parameter system $z = cxy(x^2 + y^2)$ and which passes through the hyperbola $x^2 - y^2 = a^2, z = 0.$ (c) If a characteristic strip contains at least one integral element of F(x, y, z, p, q) = 06 then show that it is an integral strip of the equation $F(x, y, z, z_x, z_y) = 0$. Q.3 (a) Find the solution of the equation $z = \frac{1}{2}(p^2 + q^2) + (p - x)(q - y)$ which passes 7 through the x-axis. 7 (b) Find a complete integral of the equation $p^2y(1 + x^2) = qx^2$ 6 (c) Describe Jacobi's method. OR 7 (a) If $u_1, u_2, ..., u_n$ are solution of the homogenous linear partial differential equation F(D,D')z = 0 then prove that $\sum_{r=1}^{n} c_r u_r$; where the $c_r's$ are arbitrary constants, is also a solution. (b) Find the particular integral of the equation $(D^2 - D')z = e^{2x+y}$. 7 Solve the equations $r + s - 2t = e^{x+y}$. 6 (c) Q.4 Find the Fourier series for the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$; $0 < x < 2\pi$ 7 (a) 7 Expand the function $f(x) = e^x$, $-\pi < x < \pi$ in terms of Fourier series. (b) 6 Derive the complex Fourier series for the interval $[0,2\pi]$. (c) (a) Define orthonormal system of functions. Prove that the sum of the squares of the fourier co- 7 efficient of a square integrable function always converges. (b) Find the Fourier series to represent the function $f(x) = x^2$, for $x \in [-\pi, \pi]$ and use 7 Parseval's identity to show $\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} \dots = \frac{\pi^4}{90}$ Define odd and even functions. Discuss about half range sine and cosine fourier series. (c) 6 Q.5 Prove the followings: 7 (a) 1) $\frac{1}{\pi} \int_{-\pi}^{\pi} D_n(u) du = 1$; where $D_n(u)$ is Dinchlet's kernel 2) $D_n(u) = \frac{\sin(n+\frac{1}{2})u}{2\sin(\frac{u}{2})}$ (b) Define orthogonal system and complete orthonormal system of functions. Prove that if $\{\emptyset_n(x)\}$ 7 be a complete orthonormal family of functions and f and g be integrable over [a, b] then f = g iff fourier expansion of f is equal to the fourier expansion of g (c) Derive Fourier integral formula. 6

OR

- (a) Find the cosine transform of x defined as: $f(x) = \begin{cases} 1 ; 0 \le x < a \\ 0; x \ge a \end{cases}$. What is the function whose 7 cosine transform is $\sqrt{\frac{2}{\pi}} \left(\frac{\sin ak}{k}\right)$?
- (b) Show that

(a)
$$\mathcal{F}_{c}\{e^{-ax}\} = \sqrt{\frac{2}{\pi}} \left(\frac{a}{a^{2}+k^{2}}\right); \ a > 0$$

(b) $\mathcal{F}_{s}\{e^{-ax}\} = \sqrt{\frac{2}{\pi}} \left(\frac{k}{a^{2}+k^{2}}\right); \ a > 0$

(c) Prove that the sum of the squares of the Fourier co-efficient of a square integrable function 6 always converges.

3

7

- (a) Find the deside transform of x defined as: $f(x) = \begin{cases} x & x & y \\ 0 & x &$
 - cosino intensiferen la $\sqrt{\frac{12}{\pi} \left(\frac{m m^2}{k} \right)^2}$
 - (b) Show that

$$\begin{array}{l} (a) \ \mathcal{F}_{i}\left(e^{-ax}\right) = \sqrt{\frac{2}{\pi}} \left(\frac{a}{a^{2}k^{2}b}\right); \ a \geq 0 \\ (b) \ \mathcal{F}_{i}\left(e^{-ax}\right) = \sqrt{\frac{2}{\pi}} \left(\frac{a}{a^{2}k^{2}b}\right); \ a \geq 0 \end{array}$$

(c) Prove that the sum of the squares of the Feurier co-officient of a square integration function. 0 always converges.