H-2325

First Year M. A. Examination
May/June - 2018
Mathematics : Paper-406
(P.D.E. \& Fourier Analysis)

Time : 3 Hours]
[Total Marks : 100

Instructions :

(1)

(2) There are five questions in the question paper.
(3) Answer all questions.
(4) Figure to the right indicates marks of the questions.

Q. 1

(a) Determine Simultaneous differential equations for the first order and the first degree 7 in three variables.
(b) Define: Pfaffian differential equation. Show that a Pfaffian differential equation in 7 two variables always possesses an integrating factor.
(c) Solve the equation $\left(x^{2} z-y^{3}\right) d x+3 x y^{2} d y+x^{3} d z=0$

OR
(a) If X is a vector space such that $X . \operatorname{curl} X=0$ and μ is an arbitrary function of $x, y, z \quad 7$ then prove that $\mu X . \operatorname{curl} \mu X=0$
(b) show that the differential equation $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=07$ is integrable and also find its primitive.
(c) State and prove Natani's method.

Q. 2

(a) Solve the equation $(y+z) d x+(z+x) d y+(x+y) d z=0$
(b) Find the equation for integral surfaces passing through any given curve
(c) Find the surface which intersects the surfaces of the system $z(x+y)=c(3 z+1) \quad 6$ orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
(a) State and prove Charpit's method.
(b) Find the surface which is orthogonal to the one-parameter system
$z=c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbola
$x^{2}-y^{2}=a^{2}, z=0$.
(c) If a characteristic strip contains at least one integral element of $F(x, y, z, p, q)=0$
then show that it is an integral strip of the equation $F\left(x, y, z, z_{x}, z_{y}\right)=0$.
Q. 3
(a) Find the solution of the equation $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$ which passes through the x -axis.
(b) Find a complete integral of the equation $p^{2} y\left(1+x^{2}\right)=q x^{2}$ 7
(c) Describe Jacobi's method.

OR

(a) If $u_{1}, u_{2}, \ldots, u_{n}$ are solution of the homogenous linear partial differential equation
7 $F\left(D, D^{\prime}\right) z=0$ then prove that $\sum_{r=1}^{n} c_{r} u_{r}$; where the $c_{r}^{\prime} s$ are arbitrary constants, is also a solution.
(b) Find the particular integral of the equation $\left(D^{2}-D^{\prime}\right) z=e^{2 x+y}$.
(c) Solve the equations $r+s-2 t=e^{x+y}$.
Q. 4
(a) Find the Fourier series for the function $f(x)=\left(\frac{\pi-x}{2}\right)^{2} ; 0<x<2 \pi$
(b) Expand the function $f(x)=e^{x},-\pi<x<\pi$ in terms of Fourier series.
(c) Derive the complex Fourier series for the interval $[0,2 \pi]$.

OR

(a) Define orthonormal system of functions. Prove that the sum of the squares of the fourier co- 7 efficient of a square integrable function always converges.
(b) Find the Fourier series to represent the function $f(x)=x^{2}$, for $x \in[-\pi, \pi]$ and use 7 Parseval's identity to show $\frac{1}{1^{4}}+\frac{1}{2^{4}}+\frac{1}{3^{4}} \ldots=\frac{\pi^{4}}{90}$
(c) Define odd and even functions. Discuss about half range sine and cosine fourier series. 6
Q. 5
(a) Prove the followings:

1) $\frac{1}{\pi} \int_{-\pi}^{\pi} D_{n}(u) d u=1$;where $D_{n}(u)$ is Dinchlet's kernel
2) $D_{n}(u)=\frac{\sin \left(n+\frac{1}{2}\right) u}{2 \sin \left(\frac{4}{2}\right)}$
(b) Define orthogonal system and complete orthonormal system of functions. Prove that if $\left\{\emptyset_{n}(x)\right\}$ be a complete orthonormal family of functions and f and g be integrable over $[a, b]$ then $f=g$ iff fourier expansion of f is equal to the fourier expansion of g
(c) Derive Fourier integral formula.
(a) Find the cosine transform of x defined as: $f(x)=\left\{\begin{array}{l}1 ; 0 \leq x<a \\ 0 ; x \geq a\end{array}\right.$. What is the function whose 7 cosine transform is $\sqrt{\frac{2}{\pi}}\left(\frac{\sin a k}{k}\right)$?
(b) Show that
(a) $\mathcal{F}_{c}\left\{e^{-a x}\right\}=\sqrt{\frac{2}{\pi}}\left(\frac{a}{a^{2}+k^{2}}\right) ; a>0$
(b) $\mathcal{F}_{S}\left\{e^{-a x}\right\}=\sqrt{\frac{2}{\pi}}\left(\frac{k}{a^{2}+k^{2}}\right) ; a>0$
(c) Prove that the sum of the squares of the Fourier co-efficient of a square integrable function 6 always converges.

afresatist st
tativat?

$$
\begin{aligned}
& \text { 2 }
\end{aligned}
$$

